Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Med Internet Res ; 24(4): e33537, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35436221

RESUMO

BACKGROUND: Suboptimal adherence to data collection procedures or a study intervention is often the cause of a failed clinical trial. Data from connected sensors, including wearables, referred to here as biometric monitoring technologies (BioMeTs), are capable of capturing adherence to both digital therapeutics and digital data collection procedures, thereby providing the opportunity to identify the determinants of adherence and thereafter, methods to maximize adherence. OBJECTIVE: We aim to describe the methods and definitions by which adherence has been captured and reported using BioMeTs in recent years. Identifying key gaps allowed us to make recommendations regarding minimum reporting requirements and consistency of definitions for BioMeT-based adherence data. METHODS: We conducted a systematic review of studies published between 2014 and 2019, which deployed a BioMeT outside the clinical or laboratory setting for which a quantitative, nonsurrogate, sensor-based measurement of adherence was reported. After systematically screening the manuscripts for eligibility, we extracted details regarding study design, participants, the BioMeT or BioMeTs used, and the definition and units of adherence. The primary definitions of adherence were categorized as a continuous variable based on duration (highest resolution), a continuous variable based on the number of measurements completed, or a categorical variable (lowest resolution). RESULTS: Our PubMed search terms identified 940 manuscripts; 100 (10.6%) met our eligibility criteria and contained descriptions of 110 BioMeTs. During literature screening, we found that 30% (53/177) of the studies that used a BioMeT outside of the clinical or laboratory setting failed to report a sensor-based, nonsurrogate, quantitative measurement of adherence. We identified 37 unique definitions of adherence reported for the 110 BioMeTs and observed that uniformity of adherence definitions was associated with the resolution of the data reported. When adherence was reported as a continuous time-based variable, the same definition of adherence was adopted for 92% (46/50) of the tools. However, when adherence data were simplified to a categorical variable, we observed 25 unique definitions of adherence reported for 37 tools. CONCLUSIONS: We recommend that quantitative, nonsurrogate, sensor-based adherence data be reported for all BioMeTs when feasible; a clear description of the sensor or sensors used to capture adherence data, the algorithm or algorithms that convert sample-level measurements to a metric of adherence, and the analytic validation data demonstrating that BioMeT-generated adherence is an accurate and reliable measurement of actual use be provided when available; and primary adherence data be reported as a continuous variable followed by categorical definitions if needed, and that the categories adopted are supported by clinical validation data and/or consistent with previous reports.


Assuntos
Biometria , Cimetidina , Biometria/métodos , Coleta de Dados , Humanos , Projetos de Pesquisa , Tecnologia
2.
Sci Data ; 8(1): 48, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547309

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder associated with motor and non-motor symptoms. Current treatments primarily focus on managing motor symptom severity such as tremor, bradykinesia, and rigidity. However, as the disease progresses, treatment side-effects can emerge such as on/off periods and dyskinesia. The objective of the Levodopa Response Study was to identify whether wearable sensor data can be used to objectively quantify symptom severity in individuals with PD exhibiting motor fluctuations. Thirty-one subjects with PD were recruited from 2 sites to participate in a 4-day study. Data was collected using 2 wrist-worn accelerometers and a waist-worn smartphone. During Days 1 and 4, a portion of the data was collected in the laboratory while subjects performed a battery of motor tasks as clinicians rated symptom severity. The remaining of the recordings were performed in the home and community settings. To our knowledge, this is the first dataset collected using wearable accelerometers with specific focus on individuals with PD experiencing motor fluctuations that is made available via an open data repository.


Assuntos
Acelerometria/métodos , Doença de Parkinson/diagnóstico , Dispositivos Eletrônicos Vestíveis , Humanos , Núcleos Parabraquiais , Doença de Parkinson/fisiopatologia , Smartphone , Punho
3.
Sci Data ; 8(1): 47, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547317

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms. Dyskinesia and motor fluctuations are complications of PD medications. An objective measure of on/off time with/without dyskinesia has been sought for some time because it would facilitate the titration of medications. The objective of the dataset herein presented is to assess if wearable sensor data can be used to generate accurate estimates of limb-specific symptom severity. Nineteen subjects with PD experiencing motor fluctuations were asked to wear a total of five wearable sensors on both forearms and shanks, as well as on the lower back. Accelerometer data was collected for four days, including two laboratory visits lasting 3 to 4 hours each while the remainder of the time was spent at home and in the community. During the laboratory visits, subjects performed a battery of motor tasks while clinicians rated limb-specific symptom severity. At home, subjects were instructed to use a smartphone app that guided the periodic performance of a set of motor tasks.


Assuntos
Acelerometria/instrumentação , Monitorização Ambulatorial , Doença de Parkinson/diagnóstico , Dispositivos Eletrônicos Vestíveis , Antebraço , Humanos , Perna (Membro) , Aplicativos Móveis , Doença de Parkinson/fisiopatologia , Smartphone , Tronco
4.
Ann Clin Transl Neurol ; 8(2): 308-320, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33350601

RESUMO

OBJECTIVE: The expanding power and accessibility of personal technology provide an opportunity to reduce burdens and costs of traditional clinical site-centric therapeutic trials in Parkinson's disease and generate novel insights. The value of this approach has never been more evident than during the current COVID-19 pandemic. We sought to (1) establish and implement the infrastructure for longitudinal, virtual follow-up of clinical trial participants, (2) compare changes in smartphone-based assessments, online patient-reported outcomes, and remote expert assessments, and (3) explore novel digital markers of Parkinson's disease disability and progression. METHODS: Participants from two recently completed phase III clinical trials of inosine and isradipine enrolled in Assessing Tele-Health Outcomes in Multiyear Extensions of Parkinson's Disease trials (AT-HOME PD), a two-year virtual cohort study. After providing electronic informed consent, individuals complete annual video visits with a movement disorder specialist, smartphone-based assessments of motor function and socialization, and patient-reported outcomes online. RESULTS: From the two clinical trials, 226 individuals from 42 states in the United States and Canada enrolled. Of these, 181 (80%) have successfully downloaded the study's smartphone application and 161 (71%) have completed patient-reported outcomes on the online platform. INTERPRETATION: It is feasible to conduct a large-scale, international virtual observational study following the completion of participation in brick-and-mortar clinical trials in Parkinson's disease. This study, which brings research to participants, will compare established clinical endpoints with novel digital biomarkers and thereby inform the longitudinal follow-up of clinical trial participants and design of future clinical trials.


Assuntos
Aplicativos Móveis , Doença de Parkinson/fisiopatologia , Medidas de Resultados Relatados pelo Paciente , Projetos de Pesquisa , Smartphone , Telemedicina , Comunicação por Videoconferência , COVID-19 , Canadá , Ensaios Clínicos como Assunto , Progressão da Doença , Seguimentos , Humanos , Estudos Longitudinais , SARS-CoV-2 , Estados Unidos
5.
NPJ Digit Med ; 2: 95, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31583283

RESUMO

Mobile and wearable device-captured data have the potential to inform Parkinson's disease (PD) care. The objective of the Clinician Input Study was to assess the feasibility and clinical utility of data obtained using a mobile health technology from PD patients. In this observational, exploratory study, PD participants wore a smartwatch and used the Fox Wearable Companion mobile phone app to stream movement data and report symptom severity and medication intake for 6 months. Data were analyzed using the Intel® Pharma Analytics Platform. Clinicians reviewed participants' data in a dashboard during in-office visits at 2 weeks, 1, 3, and 6 months. Clinicians provided feedback in focus groups leading to dashboard updates. Between June and August 2017, 51 PD patients were recruited at four US sites, and 39 (76%) completed the 6-month study. Patients streamed 83,432 h of movement data from their smartwatches (91% of expected). Reporting of symptoms and medication intake using the app was lower than expected, 44% and 60%, respectively, but did not differ according to baseline characteristics. Clinicians' feedback resulted in ten updates to the dashboard during the study period. Clinicians reported that medications and patient reported outcomes were generally discernable in the dashboard and complementary to clinical assessments. Movement, symptoms, and medication intake data were feasibly translated from the app into a clinician dashboard but there was substantial attrition rate over 6 months. Further enhancements are needed to ensure long-term patient adherence to portable technologies and optimal digital data transfer to clinicians caring for PD patients.

6.
Circulation ; 140(17): 1426-1436, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31634011

RESUMO

The complexity and costs associated with traditional randomized, controlled trials have increased exponentially over time, and now threaten to stifle the development of new drugs and devices. Nevertheless, the growing use of electronic health records, mobile applications, and wearable devices offers significant promise for transforming clinical trials, making them more pragmatic and efficient. However, many challenges must be overcome before these innovations can be implemented routinely in randomized, controlled trial operations. In October of 2018, a diverse stakeholder group convened in Washington, DC, to examine how electronic health record, mobile, and wearable technologies could be applied to clinical trials. The group specifically examined how these technologies might streamline the execution of clinical trial components, delineated innovative trial designs facilitated by technological developments, identified barriers to implementation, and determined the optimal frameworks needed for regulatory oversight. The group concluded that the application of novel technologies to clinical trials provided enormous potential, yet these changes needed to be iterative and facilitated by continuous learning and pilot studies.


Assuntos
Ensaios Clínicos como Assunto , Registros Eletrônicos de Saúde , Aplicativos Móveis , Dispositivos Eletrônicos Vestíveis , Humanos , Projetos de Pesquisa
8.
Digit Biomark ; 3(3): 116-132, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32175520

RESUMO

Digital health technologies (smartphones, smartwatches, and other body-worn sensors) can act as novel tools to aid in the diagnosis and remote objective monitoring of an individual's disease symptoms, both in clinical care and in research. Nonetheless, such digital health technologies have yet to widely demonstrate value in clinical research due to insufficient data interpretability and lack of regulatory acceptance. Metadata, i.e., data that accompany and describe the primary data, can be utilized to better understand the context of the sensor data and can assist in data management, data sharing, and subsequent data analysis. The need for data and metadata standards for digital health technologies has been raised in academic and industry research communities and has also been noted by regulatory authorities. Therefore, to address this unmet need, we here propose a metadata set that reflects regulatory guidelines and that can serve as a conceptual map to (1) inform researchers on the metadata they should collect in digital health studies, aiming to increase the interpretability and exchangeability of their data, and (2) direct standard development organizations on how to extend their existing standards to incorporate digital health technologies. The proposed metadata set is informed by existing standards pertaining to clinical trials and medical devices, in addition to existing schemas that have supported digital health technology studies. We illustrate this specifically in the context of Parkinson's disease, as a model for a wide range of other chronic conditions for which remote monitoring would be useful in both care and science. We invite the scientific and clinical research communities to apply the proposed metadata set to ongoing and planned research. Where the proposed metadata fall short, we ask users to contribute to its ongoing revision so that an adequate degree of consensus can be maintained in a rapidly evolving technology landscape.

9.
Digit Biomark ; 2(1): 11-30, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29938250

RESUMO

BACKGROUND: The use of mobile devices in clinical research has advanced substantially in recent years due to the rapid pace of technology development. With an overall aim of informing the future use of mobile devices in interventional clinical research to measure primary outcomes, we conducted a systematic review of the use of and clinical outcomes measured by mobile devices (mobile outcomes) in observational and interventional clinical research. METHOD: We conducted a PubMed search using a range of search terms to retrieve peer-reviewed articles on clinical research published between January 2010 and May 2016 in which mobile devices were used to measure study outcomes. We screened each publication for specific inclusion and exclusion criteria. We then identified and qualitatively summarized the use of mobile outcome assessments in clinical research, including the type and design of the study, therapeutic focus, type of mobile device(s) used, and specific mobile outcomes reported. RESULTS: The search retrieved 2,530 potential articles of interest. After screening, 88 publications remained. Twenty-five percent of the publications (n = 22) described mobile outcomes used in interventional research, and the rest (n = 66) described observational clinical research. Thirteen therapeutic areas were represented. Five categories of mobile devices were identified: (1) inertial sensors, (2) biosensors, (3) pressure sensors and walkways, (4) medication adherence monitors, and (5) location monitors; inertial sensors/accelerometers were most common (reported in 86% of the publications). Among the variety of mobile outcomes, various assessments of physical activity were most common (reported in 74% of the publications). Other mobile outcomes included assessments of sleep, mobility, and pill adherence, as well as biomarkers assessed using a mobile device, including cardiac measures, glucose, gastric reflux, respiratory measures, and intensity of head-related injury. CONCLUSION: Mobile devices are being widely used in clinical research to assess outcomes, although their use in interventional research to assess therapeutic effectiveness is limited. For mobile devices to be used more frequently in pivotal interventional research - such as trials informing regulatory decision-making - more focus should be placed on: (1) consolidating the evidence supporting the clinical meaningfulness of specific mobile outcomes, and (2) standardizing the use of mobile devices in clinical research to measure specific mobile outcomes (e.g., data capture frequencies, placement of device). To that aim, this manuscript offers a broad overview of the various mobile outcome assessments currently used in observational and interventional research, and categorizes and consolidates this information for researchers interested in using mobile devices to assess outcomes in interventional research.

10.
PLoS One ; 12(12): e0189161, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29261709

RESUMO

Wearable devices can capture objective day-to-day data about Parkinson's Disease (PD). This study aims to assess the feasibility of implementing wearable technology to collect data from multiple sensors during the daily lives of PD patients. The Parkinson@home study is an observational, two-cohort (North America, NAM; The Netherlands, NL) study. To recruit participants, different strategies were used between sites. Main enrolment criteria were self-reported diagnosis of PD, possession of a smartphone and age≥18 years. Participants used the Fox Wearable Companion app on a smartwatch and smartphone for a minimum of 6 weeks (NAM) or 13 weeks (NL). Sensor-derived measures estimated information about movement. Additionally, medication intake and symptoms were collected via self-reports in the app. A total of 953 participants were included (NL: 304, NAM: 649). Enrolment rate was 88% in the NL (n = 304) and 51% (n = 649) in NAM. Overall, 84% (n = 805) of participants contributed sensor data. Participants were compliant for 68% (16.3 hours/participant/day) of the study period in NL and for 62% (14.8 hours/participant/day) in NAM. Daily accelerometer data collection decreased 23% in the NL after 13 weeks, and 27% in NAM after 6 weeks. Data contribution was not affected by demographics, clinical characteristics or attitude towards technology, but was by the platform usability score in the NL (χ2 (2) = 32.014, p<0.001), and self-reported depression in NAM (χ2(2) = 6.397, p = .04). The Parkinson@home study shows that it is feasible to collect objective data using multiple wearable sensors in PD during daily life in a large cohort.


Assuntos
Técnicas Biossensoriais , Doença de Parkinson/fisiopatologia , Idoso , Estudos de Viabilidade , Feminino , Marcha , Humanos , Masculino , Pessoa de Meia-Idade , Movimento
11.
J Neurol ; 264(8): 1642-1654, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28251357

RESUMO

Despite the large number of studies that have investigated the use of wearable sensors to detect gait disturbances such as Freezing of gait (FOG) and falls, there is little consensus regarding appropriate methodologies for how to optimally apply such devices. Here, an overview of the use of wearable systems to assess FOG and falls in Parkinson's disease (PD) and validation performance is presented. A systematic search in the PubMed and Web of Science databases was performed using a group of concept key words. The final search was performed in January 2017, and articles were selected based upon a set of eligibility criteria. In total, 27 articles were selected. Of those, 23 related to FOG and 4 to falls. FOG studies were performed in either laboratory or home settings, with sample sizes ranging from 1 PD up to 48 PD presenting Hoehn and Yahr stage from 2 to 4. The shin was the most common sensor location and accelerometer was the most frequently used sensor type. Validity measures ranged from 73-100% for sensitivity and 67-100% for specificity. Falls and fall risk studies were all home-based, including samples sizes of 1 PD up to 107 PD, mostly using one sensor containing accelerometers, worn at various body locations. Despite the promising validation initiatives reported in these studies, they were all performed in relatively small sample sizes, and there was a significant variability in outcomes measured and results reported. Given these limitations, the validation of sensor-derived assessments of PD features would benefit from more focused research efforts, increased collaboration among researchers, aligning data collection protocols, and sharing data sets.


Assuntos
Acidentes por Quedas , Transtornos Neurológicos da Marcha/diagnóstico , Monitorização Ambulatorial/instrumentação , Doença de Parkinson/diagnóstico , Dispositivos Eletrônicos Vestíveis , Acidentes por Quedas/prevenção & controle , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/fisiopatologia , Transtornos Neurológicos da Marcha/reabilitação , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/fisiopatologia , Doença de Parkinson/reabilitação
12.
JMIR Res Protoc ; 5(3): e172, 2016 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-27565186

RESUMO

BACKGROUND: Long-term management of Parkinson's disease does not reach its full potential because we lack knowledge about individual variations in clinical presentation and disease progression. Continuous and longitudinal assessments in real-life (ie, within the patients' own home environment) might fill this knowledge gap. OBJECTIVE: The primary aim of the Parkinson@Home study is to evaluate the feasibility and compliance of using multiple wearable sensors to collect clinically relevant data. Our second aim is to address the usability of these data for answering clinical research questions. Finally, we aim to build a database for future validation of novel algorithms applied to sensor-derived data from Parkinson's patients during daily functioning. METHODS: The Parkinson@Home study is a two-phase observational study involving 1000 Parkinson's patients and 250 physiotherapists. Disease status is assessed using a short version of the Parkinson's Progression Markers Initiative protocol, performed by certified physiotherapists. Additionally, participants will wear a set of sensors (smartwatch, smartphone, and fall detector), and use these together with a customized smartphone app (Fox Insight), 24/7 for 3 months. The sensors embedded within the smartwatch and fall detector may be used to estimate physical activity, tremor, sleep quality, and falls. Medication intake and fall incidents will be measured via patients' self-reports in the smartphone app. Phase one will address the feasibility of the study protocol. In phase two, mathematicians will distill relevant summary statistics from the raw sensor signals, which will be compared against the clinical outcomes. RESULTS: Recruitment of 300 participants for phase one was concluded in March, 2016, and the follow-up period will end in June, 2016. Phase two will include the remaining participants, and will commence in September, 2016. CONCLUSIONS: The Parkinson@Home study is expected to generate new insights into the feasibility of integrating self-collected information from wearable sensors into both daily routines and clinical practices for Parkinson's patients. This study represents an important step towards building a reliable system that translates and integrates real-life information into clinical decisions, with the long-term aim of delivering personalized disease management support. CLINICALTRIAL: ClinicalTrials.gov NCT02474329; https://clinicaltrials.gov/ct2/show/NCT02474329 (Archived at http://www.webcitation.org/6joEc5P1v).

13.
Mhealth ; 2: 20, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28293596

RESUMO

Parkinson's disease (PD) is a progressive, degenerative disorder of the central nervous system that is diagnosed and measured clinically by the Unified Parkinson's Disease Rating Scale (UPDRS). Tools for continuous and objective monitoring of PD motor symptoms are needed to complement clinical assessments of symptom severity to further inform PD therapeutic development across several arenas, from developing more robust clinical trial outcome measures to establishing biomarkers of disease progression. The Michael J. Fox Foundation for Parkinson's Disease Research and Intel Corporation have joined forces to develop a mobile application and an Internet of Things (IoT) platform to support large-scale studies of objective, continuously sampled sensory data from people with PD. This platform provides both population and per-patient analyses, measuring gait, activity level, nighttime activity, tremor, as well as other structured assessments and tasks. All data collected will be available to researchers on an open-source platform. Development of the IoT platform raised a number of engineering considerations, including wearable sensor choice, data management and curation, and algorithm validation. This project has successfully demonstrated proof of concept that IoT platforms, wearable technologies and the data they generate offer exciting possibilities for more robust, reliable, and low-cost research methodologies and patient care strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...